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~ Simple Network Analog Approach for the
Quasi-Static Characteristics of General
Lossy, Anisotropic, Layered Structures

WJAI K. TRIPATHI, MEMBER, IEEE, AND RICHARD J. BUCOLO

,4bstract — A network analog method to compute the quasi-static param-

eters of rnukiiayered planar structures consisting of Iossy and/or aniso-

tropic dielectric media is presented. Tbe discrete netrvork analog having

complex (e.g., JiL, R C) branches can be reduced and solved for the de-

sired interface node voltages and currents by using known techniques

leading to the solution of the quasi-static potential problems. All of the

quasi-static transmission-line constants required for the evaluation of the

propagation characteristics of general multilayered quasi-’flCM planar

structures are computed from the solution of the two-dimensional discrete

analog network. ‘Ihese constants include the self- and mutual-resistances,

inductances, conductance, and capacitances per unit length of the strnc-

ture. The method is applied to compute tbe propagation constants, imped-

ances, aud field di.stibution for typical single and coupled strip structures

on Iossy, anisotropic, and layered substrates.

1. INTRODUCTION

o F ALL THE METHODS that have evolved over the

years for the computation of the propagation char-

acteristics and other properties of planar structures, per-

haps the most direct approach is the use of the finite-dif-

ference equations (e.g., .[1]–[3]). The corresponding resistive

network analog for lossless planar structures, together with

simple multiport network theory, enabled Lennartson [1] to

formulate a simple, yet accurate, computational procedure

for the capacitance matrix elements of coupled microstrips.

The method has also been extended to planar lossless

microstrip problems without the top cover [4] and three-

dimensional lossless problems, and has been applied to

microstrip rectangular disk and microstrip gap discontinu-

ity problems [5]. More recently, the remarkably efficient

and versatile method of lines has also evolved from the

finite-difference equations for the frequency-dependent

parameters of planar structures, as well as the solution of

three-dimensional problems [6]–[8]. In this paper, Lennart-

son’s method is extended to apply to general lossy, aniso-
tropic multilayered structures. In addition, it is shown that

planar structures with strips at different levels, as well as

the effect of strip thickness, can also be included in the

analysis and computations. Also, for a given structure, the

charge distribution on the strips, the potential and, hence,

the electric-field variation everywhere can also be evaluated
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by using this network analog approach. The knowledge of

the charge distribution is also used to estimate the conduc-

tor losses in strips where thickness is large as compared to

the skin depth. This conceptually simple, direct, yet accu-

rate approach is intended to complement other techniques

with varying degrees of complexity, accuracy, and sophisti-

cation that have evolved over the years (e.g., [5]–[16]) for

the study of single and multilayered structures.

II. THE NETWORK ANALOG

The quasi-static fields are the solutions to the following

equations subject to all the boundary conditions of the

structure:

VX3=0 or ~=–v+ (la)

V XP=J+ ju~. (lb)

For the general lossy, anisotropic case, the potential @ in

each region then is a solution of

V“[uv@+ jco?”vr#]=O (2)

where F is the permittivity dyadic. The boundary condi-

tions at the interface of any two media 1 and 2 are given by

fix(E1-E2)=o (3a)

fi. [(ulil+ jkIfil)-(UzEz+ j~3z)]=0 (3d)

where El ~ = – V41,23 ~1,2 = ~1,2 “J%, 2 Y G is the conductiv.
ity of the medium, and o is the frequency. Equation (2)

can be expressed in a finite-difference form which, together

with the boundary conditions as given by (3), leads to a

three-dimensional discrete network analog having, in gen-

eral, complex branches. In this paper, we consider the

two-dimensional boundary-value problem associated with

the evaluation of the quasi-TEM propagation characteris-

tics of planar structures having, in general, Iossy and/or

anisotropic (uniaxial or biaxial) layers with a diagonal

permittivity tensor. For such structures (Fig. l(a)), the

two-dimensional boundary-value problem is expressed as

d+
is continuous at the boundaries

z
(4b)
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Fig. 1. (a) A generic layered structure with N, strips. (b) The network

analog for a representative region. Y‘s and Z‘s depend on the struc-
ture, e.g., for lossy isotropic medium

~ = a, + jut, Z, =1/Y/ y,=;(~+y)

and for lossless anisotropic medium

(o-jut )Yi
y dy

s continuous at the boundaries &d

excluding the strips (4c)

and

+=~, i=~,2,. . . , Non the strips. (4d)

Expressing the above equations in a finite-difference form

[2], [3] leads to

(IJ + jtifx)
@( X+ Ax, y)+@(x– Ax, y)-2@(x, y)

AX2

+(x, y+ Ay)++(x, y- Ay)-2+(x, y)
+(u+jacy)

Ay2

–0~

which, together with the boundary conditions as

@(x, y+ Ay)–@(x, y)
(U+jocy) Ay

and

@(x+ Ax, y)–~(x, y)

Ax

(5)

given by

are’ continuous, and define an electrical network analog

having complex branches as shown in Fig. l(b). The right-

hand side of (5) will be equal to (– p) if we were writing

the Poisson’s equation, in which case the node current will

correspond to the charge density at the point of interest. It

should be noted that Ax need not be equal to A y, which

enables us to conveniently scale the problem independently

in the two transverse directions in each layer of the struc-

ture. For the case of Ax equal to A y, the immittance values

for the branches are given in Fig. l(b) for the lossy

isotropic, as well as the lossless uniaxial medium case,

The next problem is to solve for the currents at a set “of

nodes where the voltages are specified. The solution fclr the

sum of currents at the nodes on the conductor strip when

all the node voltages are known at a given frequency gives

the total equivalent admittance per unit length of the strip.

The same solution in the absence of the dielectric medium

is used to find the inductance matrix of the structure. The

conductor loss can also be computed by this method in

terms of the fields at the surface of the conductor or the

charge distribution on the conducting strips [3]. As an

example, for a structure composed of a single strip of

width W and thickness T, we discretize the strip sudace

into N sections and solve for the currents (I .O~e) at each

strip node when the voltage at all the strip nodes is 1 V at

frequency ~ rad/s. Then the transmission-line constants

per unit length for this case are

/N

L= @pOEO/ sImlI.~.], H/m, with all the

dielectric layers removed

(6a)

[6b)

(6c)

N

~ ~ m-dkkl)’ ~~;;
Z, Q/m; R.= .,. -——-.

‘= 2(&) ‘N,

(?m[lnde]) “o

{6d)

The above expressions are readily generalized to a multiple

strip situation.

111. THE SOLUTION METHOD

For the case of infinitesimally thin strips on layered

lossless media, Lermartson solved for the charge on each

strip by first deriving the total resistance matrix repre-

senting the relationship between the node voltages and

currents at the interface utilizing some basic transfcmma-

tions and properties of the electrical network. He then

found the current in each strip which corresponds to the

total charge on the strip by adding the currents on each

node of the strip when a given potential is applied on all

the strips. The procedure given in [1] provides a simple

computational algorithm for obtaining the impedance ma-
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Fig. 2. (a) The discrete network analog. (b) The algebraically equivalent
transformed network.

trix associated with the node voltages and currents at any

interface. This procedure is readily modified to apply to

the case of Iossy, anisotropic layered structures with thin

strips on one interface and to the case of thick strips at

different boundaries as shown below.

The N= voltages at a given boundary, where N= repre-

sents the number of columns in the discretization scheme,

are expressed in terms of the corresponding node currents

in the form of an NC X NC total impedance matrix as given

by (see Fig. 2)

[V]= [Z][I]. (7)

We should note that, in relation to the boundary-value

problem, the elements of [Z] are essentially a discrete

representation of the boundary Green’s function in real

space. The elements of [Z] are obtained as in [1] in an

algebraically equivalent transformed domain in terms of a

diagonal matrix [~] as given by

[2]= [A][Z][A] (8)

where [A] is an NC X iVC involuntary matrix consisting of

the eigenvectors of the tridiagonal connection matrix at

each level as given by [1]

The diagonal matrix elements at the boundary level L

1
~:=

1 1 > j=l,2,. ... NC

(i, +(a;),‘~JJ”

are computed from the recurrence relation

(a:j’),= ~1 +Zk+l

(&L+A’yk
with

a:,,=z:,,.

(9)

(lo)

(ha)

(llb)

z~, ~ is the impedance of the series element corresponding

to the first level from the upper (u) and the lower (1) side,

respectively. Aj’s are the eigenvalues of the connection

matrix and are given by [1]

h]= 4 sin2
[1

jr

2( NC+1) ‘
j=l,2,. ... NC. (12)

In addition to the above straightforward modification to

the method given in [1], we should note that for structures

without a top or a bottom cover (grounded plane), an

asymptotic expression can be derived for au or al by

requiring that

(~t,l’), = (~fi,I),~ (%),! ~=l!z” - “NC.

(13)

This simplifies the computations for open structures and

structures without a ground plane. Equation (13), for an

open structure, leads to

~,Y’ + [A;Y2Z2 +4 A,yz]1’2
(au,, ),=

2A1y
(14]

where z and y are the appropriate impedance and the

admittance elements of the upper or lower unbounded

homogeneous material. For isotropic materials, the above
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expression simplifies to

( r)

(au,l)j=~ 1+ 1+: .

J

(15)

For normalized z =1, the above equation (15) reduces to

the one obtained in [4] for unshielded lossless microstrip

case.

IV. THICK AND MULTILEVEL STRIP CASE

For structures with strips at more than one level or

structures with thick strips, the above procedure is gener-

alized in terms of impedance matrix elements relating the

voltages at the nodes of all the interfaces where the strips

are located to the corresponding node currents. That is, the

total impedance matrix is now of the order nNc, where n is

the number of different levels where the strips are located.

In this case, the elements of the total impedance matrix

corresponding to self-impedance terms are evaluated in

exactly the same manner as for the previous case, that is,

the elements corresponding to transfer impedance terms

are derived in the transformed diagonalized domain. The

transfer impedance terms in this diagonalized domain re-

lating the voltage on a given interface node at level k to

the current on another interface node at level m in the

same column j are found to be (Fig. 2(b)):

q=k–sgn(k–m) (:),

n >
q=m+sgn(k–m)

— + Ajyq
(:),

j=l,2,3,. ... NC. (16)

The expression on the right side of (16) can be observed

to be the fraction of the current on the level m node which

reaches the level k node, multiplied by the impedance to

the upper ground at level k, including the admittance

A, y‘. Because the impedance matrix is symmetric for a

passive network, the transfer impedance element relating

the voltage at a level m node to the current at a level k

node in the same column j is obtained directly as

(17)

The ‘transfer impedance matrix in real space relating

voltages at level k and currents at level m is given by

The total impedance matrix for the general case with

conducting strips at several levels can be constructed using

the self-inmedance submatrices as rziven bv 111 and the

TABLE I

RESISTANCE AND CAPACITANCE PER UNIT LENGTH BETWEEN Two

COPLANAR STRIPS ON SILICON ( u = 0,1 Q/m) ,

H:s:u CONPUTED EXACT ___

R,fi /m C, pfim R,fifm cJ/&

N=20 N=40 F>(trap. N=20 N=40 Extrap,

2:1.2 5.0075 5.1282 5,2489 112.24 109,6 106 96 5.2604 106 86

1:1:1 \ 6.13S7 6,2578 6.3769 I 91.55 89,81 88.07 I 6.K738 I S79

,5:1 :,5 7.5157 7.6746 7 7734 74.16 73.23 72 3 7.S186 71.93
..—

transfer impedance submatrices as presented above

[

.V]l
V]2

V]p

([-m [2112
[Z]l, [2],2 ;~

1“[.2-11P [21,,
(19)

Equation (19) can be used to ,extend Lennartson’s [1]

method for multiple strips (zero thickness) at the same

interface level to handle multiple zero thickness strips at

different levels and also multiple finite thickness strips at

different levels.

For a given set of potentials on different strips, the

solution of (19) for currents on the strips is found in the

same manner as for the single interface infinitesimally thin

strip case discussed earlier. These node currents are then

used to find all the line constants and quasi-TEM normal

mode parameters of the structure.

V. IIESULTS AND DISCUSSION

The propagation characteristics of several structures con-

sisting of single and coupled lines on lossy, anisotropic,

and layered structures have been computed by utilizing the

above techniques, and some typical results are presented

here. In order to check the accuracy of our calculations, we

have computed the propagation characteristics of some

uniaxial and 10SSY structures for which either exact or

reliable numerical results are available. In addition, jmJpa-

gation characteristics of other layered, multilevel structures

are included to demonstrate the versatility y of this tech-

nique.

Table I shows the capacitance and resistance per unit

length between two coplanar strips (width W separated by

a distance S) deposited on doped silicon with u = O.1/m,

~ = 11.7 c~. The computed values for two sets of discretiza-

tions corresponding to 10 and 20 nodes on each strip are

given in the table together with the exactly calculated

values for this simple case obtained by conformal mapping

as given by

C.i-}co K’(k) ~= 2K(k)
c=———

2 K(k)
(20)

uK’(k)

where K(k) is the complete elli~tic integral of the first, . . . .,
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Fig. 3. (a) Attenuation constant due to finite conductivity of the strip.

— computed values, ---- from [11]. (b) Dielectric loss for micro-
strip on Silicon (u = 1.0 Cl/m).

kind and

k= S/( S+2W)

K’(k) =K(k’)

k’=j~.

It is seen that the error in the computed capacitance and

resistance values with N = 40 is around 2 percent and that

the accuracy can be further improved by using larger

number of nodes on the strips or by using a simple

extrapola~ioti scheme such as

c ~xtrap= C2N + (C2N – CN). (21)

The results obtained for the attenuation constant of a

microstrip due to conductor and dielectric losses are shown

in Fig. 3(a) and (b), respectively, together with the corre-

sponding results obtained by Pucel et al. [11] and Simpson

and Tseng [13]. Other results obtained for MIS lines are

also found to be in good agreement with those in [10] and

44.J
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39.4 7.0 I
1

0 .i .3 .4

T/H’

1
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.03s

z

1

.034 :

c1

.033 a’
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Fig. 4. Propagation characteristics as a function of microstrip thickness.

Substrate silicon, o = 0.01 Q/m, W= H.

TABLE II
NORMAL-MODE PHASE VELOCITIES OF COUPLED MICROSTRIPS ON

UNIAXIAL MEDIA

Calculated
VelOcltIes Fran [17]

.x108m/s Xlo%vs

lJ/H S/H 8/H ‘De ’00 ‘oe ‘Do

asflam Shielded 0.700 0.250 2.55 1.3.s7 1.IS3 1.2071.310

Epsilam Unshielded 0.800 0.2.S0 ~ 6 1.107 1.Is2 1.138 1..304

Alumina Unsh~el ded 0.875 0.260 >6 1.16 1.273 1-15 1.286

Boron NitrJde Shielded 1.60 0.095 2.80 1.879 1.862 1.876 1.875

Saphire Shielded (90” offset) 0.690 0.225 2.2o 1.265 1.255 1.2561.257

Saphirs Unshlclded 0-730 0.260 76 1.093 1.231 1.086 7..327

[15] for the range of conductivities in the lossy dielectric

propagation region. Fig. 4 shows the effect of the line
thickness on the propagation characteristics of microstrips

on lossy substrates. The even- and odd-mode velocities

calculated for some coupled microstrips on uniaxial sub-

strates are given in Table II, together with the same values

computed by Alexopoulos and Maas [17, table I]. Fig. 5

shows the microstrip parameters for an inverted microstrip

studied by Spielman [14], together with his results.

Fig. 6 shows the even- and odd-mode propagation char-

acteristics of a pair of coupled microstrips on a Si–SiOz

substrate as a function of the thickness of the two layers.

The propagation characteristics of a simple symmetrical

three-line–two-level structure chosen to demonstrate the

application of this method to multilevel problems are shown

in Fig. 7. Here the phase velocities of the three normal

modes A (odd), and B (even–even), and C (even–odd) [18]

are plotted as a function of the ratio of the thickness of the

two dielectric layers.

It should be mentioned that the computation time for

these calculations is dominated primarily by the CPU time

required in inverting the N X N matrix associated with the

nodes on the strips only and that the complexity of the

configuration, including the number of columns, is only

limited by the storage and the speed of the computer. Also,



TRIPATHI AND RUCOLO: GENERAL LOSSY, ANZSOTROPIC, LAYERED STRUCTURES 1463

//0 —/0

/ 2 3 4 5 6 7 8

Wit;

Fig. 5: Properties of inverted microstnp line.

/00.

/0.

T‘-0
z’
&

n

t! .1

.0/

.00/.

‘C. ~ s w.— __ ____ _
4E0 H,

———- -——- ____ ____ __

o-; 117~0 Hz

F= I.GHz w=s= (H, +H2)/2

-+

2
— —

I

o .2 .4 .6 .8 /

H//( H/+ Hz)

Fig. 6. Even- and odd-mode propagation constants for coupled rnicro-

stnps on Si–Si02.

the method cart be readily extended to three-dimensional

quasi-static problems as shown by Chao [5] for lossless

isotropic medium sin~e-level structures.

VI, CONCLUSION

In summary, a simple versatile method to compute all
the parameters required for the computation of the quasi-

TEM propagation characteristics of lossy layered structure

with multilevel strips has been presented. The technique

and results should be useful in the analysis of many

structures where other more sophisticated techniques are

either not available or become too cumbersome.

1-=
Q /.2
2

\ VP,
-1

z
g /.0 Vpc

z

.9;1 1~
.25 .5 /. 2.

H,/H2

Fig. 7. Normal mode velocities of a two-level, symmetrical three-line

structure W = 2 S = Hz.
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