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Abstract — A network analog method to compute the quasi-static param-
eters of multilayered planar structures consisting of lossy and/or aniso-
tropic dielectric media is presented. The discrete network analog having
complex {(e.g., RL, RC) branches can be reduced and solved for the de-
sired interface node voltages and currents by using known techniques
leading to the solution of the quasi-static potential problems. All of the
quasi-static transmission-line constants required for the evaluation of the
propagation characteristics of general multilayered quasi-TEM planar
structures are computed from the solution of the two-dimensional discrete
analog network. These constants include the self- and mutual-resistances,
inductances, conductances, and capacitances per unit length of the struc-
ture. The method is applied to compute the propagation constants, imped-
ances, and field distribution for typical single and coupled strip structures
on lossy, anisotropic, and layered substrates.

I. INTRODUCTION

O F ALL THE METHODS that have evolved over the
years for the computation of the propagation char-
acteristics and other properties of planar structures, per-
haps the most direct approach is the use of the finite-dif-
ference equations (e.g.,.[1]-[3]). The corresponding resistive
network analog for lossless planar structures, together with
simple multiport network theory, enabled Lennartson [1] to
formulate a simple, yet accurate, computational procedure
for the capacitance matrix elements of coupled microstrips.
The method has also been extended to planar lossless
microstrip problems without the top cover [4] and three-
dimensional lossless problems, and has been applied to
microstrip rectangular disk and microstrip gap discontinu-
ity problems [5]. More recently, the remarkably efficient
and versatile method of lines has also evolved from the
finite-difference equations for the frequency-dependent
parameters of planar structures, as well as the solution of
three-dimensional problems [6]-[8]. In this paper, Lennart-
son’s method is extended to apply to general lossy, aniso-
tropic multilayered structures. In addition, it is shown that
planar structures with strips at different levels, as well as
the effect of strip thickness, can also be included in the
analysis and computations. Also, for a given structure, the
charge distribution on the strips, the potential and, hence,
the electric-field variation everywhere can also be evaluated

Manuscript received May 7, 1985; revised July 19, 1985.
The authors are with the Department of Electrical and Computer
Engineering, Oregon State University, Corvallis OR 97331.

by using this network analog approach. The knowledge of
the charge distribution is also used to estimate the conduc-
tor losses in strips where thickness is large as compared to
the skin depth. This conceptually simple, direct, yet accu-
rate approach is intended to complement other techniques
with varying degrees of complexity, accuracy, and sophisti-
cation that have evolved over the years (e.g., [5]-[16]) for
the study of single and multilayered structures.

I1I. THE NETWORK ANALOG

The quasi-static fields are the solutions to the following
equations subject to all the boundary conditions of the
structure: ;

(1a)
(1b)

VXE=0 or E=~V¢
VXH—=f+jw_D.

For the general lossy, anisotropic case, the potential ¢ in
each region then is a solution of

V-[oVe+ jweve]=0 (2)

where € is the permittivity dyadic. The boundary condi-
tions at the interface of any two media 1 and 2 are given by

Ax(E —E,)=0 (3a)
a- [(olﬁl+jw51)—(a21:52+jw52)] =0 (3d)

where El,z ==V, ,, 5172 = ?1,2'1?1,2’ o is the conductiv-
ity of the medium, and w is the frequency. Equation (2)
can be expressed in a finite-difference form which, together
with the boundary conditions as given by (3), leads to a
three-dimensional discrete network analog having, in gen-
eral, complex branches. In this paper, we consider the
two-dimensional boundary-value problem associated with
the evaluation of the quasi-TEM propagation characteris-
tics of planar structures having, in general, lossy and/or
anisotropic (uniaxial or biaxial) layers with a diagonal
permittivity tensor. For such structures (Fig. 1(a)), the
two-dimensional boundary-value problem is expressed as

2¢ 2¢
(°+jw€x)5F+(o+jw€y)a—y?=0 (4a)
do
. is continuous at the boundaries (4b)
X
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Fig. 1. (a) A generic layered structure with N, strips. (b) The network
analog for a representative region. Y’s and Z’s depend on the struc-
ture, e.g., for lossy isotropic medium

Y=o+ jue, Z,=1/Y, Y,=3(Y,+Y)

iy
and for lossless anisotropic medium
Y, = jwe, Z,=1/jwe, Y, =3(Y,+7).

17

¢ . .
(o — jowe,) 7 is continuous at the boundaries and
y

excluding the strips (4c)

and
o=V, (4d)

Expressing the above equations in a finite-difference form
(2], [3] leads to

¢(x +Ax, y)+¢(x - Ax, y)—2¢(x, y)

i=1,2,--+, N on the strips.

(o + jwe,) A
(o joe,) ¢(x,y +Ay)+¢(x, y —Ay)—2¢(x,y)
Ay?
=0 (5

which, together with the boundary conditions as given by

¢(xay+Ay)_¢(x’ y)
Ay

(o + jwey)

and
¢(x+4x, y)—o(x, y)
Ax

are continuous, and define an electrical network analog
having complex branches as shown in Fig. 1(b). The right-
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hand side of (5) will be equal to (— p) if we were writing
the Poisson’s equation, in which case the node current will
correspond to the charge density at the point of interest. It
should be noted that Ax need not be equal to Ay, which
enables us to conveniently scale the problem independently
in the two transverse directions in each layer of the struc-
ture. For the case of Ax equal to A y, the immittance values
for the branches are given in Fig. 1(b) for the lossy
isotropic, as well as the lossless uniaxial medium case.

The next problem is to solve for the currents at a set of
nodes where the voltages are specified. The solution for the
sum of currents at the nodes on the conductor strip when
all the node voltages are known at a given frequency gives
the total equivalent admittance per unit length of the strip.
The same solution in the absence of the dielectric medium
is used to find the inductance matrix of the structure. The
conductor loss can also be computed by this method in
terms of the fields at the surface of the conductor or the
charge distribution on the conducting strips [3]. As an
example, for a structure composed of a single strip of
width W and thickness T, we discretize the strip surface
into N sections and solve for the currents (I, 4.) at each
strip node when the voltage at all the strip nodes is 1 V at
frequency w rad/s. Then the transmission-line constants
per unit length for this case are

N

c=1m[21m,de] w, F/m (6a)
1
N

G=Re[ZIn0de], Q/m (6b)
1

N
L= queO/ZIm[Inode], H/m, with all the
1

dielectric layers removed  (6¢)
N

RSN ;(Iln[lnode])2

- o/m: 5= [
AW+T) (X 2’ T 2o
Zlm[lnode] '

1

(6d)

The above expressions are readily generalized to a multiple
strip situation. -

1. THE SOLUTION METHOD

For the case of infinitesimally thin strips on layered
lossless media, Lennartson solved for the charge on each
strip by first deriving the total resistance matrix repre-
senting the relationship between the node voltages and
currents at the interface utilizing some basic transforma-
tions and properties of the electrical network. He then
found the current in each strip which corresponds to the
total charge on the strip by adding the currents on each
node of the strip when a given potential is applied on all
the strips. The procedure given in [1] provides a simple
computational algorithm for obtaining the impedance ma-
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(a) The discrete network analog. (b) The algebraically equivalent
transformed network.

Fig. 2.

trix associated with the node voltages and currents at any
interface. This procedure is readily modified to apply to
the case of lossy, anisotropic layered structures with thin
strips on one interface and to the case of thick strips at
different boundaries as shown below.

The N, voltages at a given boundary, where N, repre-
sents the number of columns in the discretization scheme,
are expressed in terms of the corresponding node currents
in the form of an N, X N, total impedance matrix as given
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by (see Fig. 2)
[vi=1z][1]. (7)
We should note that, in relation to the boundary-value

problem, the elements of [Z] are essentially a discrete
representation of the boundary Green’s function in real

space. The elements of [Z] are obtained as in [1] in an

algebraically equivalent transformed domain in terms of a
diagonal matrix [Z] as given by

[Z]1=[4][Z][4] (8)
where [A] is an N, X N, involuntary matrix consisting of

the eigenvectors of the tridiagonal connection matrix at
each level as given by [1]

2 . ijm 9
teny =y 557 ol w1/ )
The diagonal matrix elements at the boundary level L
~ L 1 .
Z.I= 1 1 \ L’ J=1’2""’Nc
+ +Ay
(ag), " (af), ™
(10)
are computed from the recurrence relation
k+1 1 k+1
(au’l )j: T ) +z (11a)
+Ay
(aﬁ,l)] ’
with
ai,, = Zi,l- (11b)

z!, ; is the impedance of the series element corresponding
to the first level from the upper (¢) and the lower (/) side,
respectively. A ’s are the eigenvalues of the connection
matrix and are given by [1]

jm

2(N,+1) (12)

= 4sin? j = R
}\j—4sm [ }, Jj=12,--- N_.
In addition to the above straightforward modification to
the method given in [1], we should note that for structures
without a top or a bottom cover (grounded plane), an
asymptotic expression can be derived for «, or «, by

requiring that

(aﬁf;l).lz(aﬁyl)]é(au,l)j’ j=172"”9N

<

(13)
This simplifies the computations for open structures and

structures without a ground plane. Equation (13), for an
open structure, leads to

12
vzt [}\iyzz2 +4?\ij]

2A,y

A
(au, ! ) J = (14)
where z and y are the appropriate impedance and the
admittance elements of the upper or lower unbounded
homogeneous material. For isotropic materials, the above
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expression simplifies to

z 4 ;
(au’,)j=-2- 1+ 1+X~ . (15)
J

For normalized z =1, the above equation (15) reduces to
the one obtained in [4] for unshielded lossless microstrip
case,

IV. THICK AND MULTILEVEL STRIP CASE

For structures with strips at more than one level or
structures with thick strips, the above procedure is gener-
alized in terms of impedance matrix elements relating the
voltages at the nodes of all the interfaces where the strips
are located to the corresponding node currents. That is, the
total impedance matrix is now of the order nN_, where n is
the number of different levels where the strips are located.
In this case, the elements of the total impedance matrix
corresponding to self-impedance terms are evaluated in
exactly the same manner as for the previous case, that is,
the elements corresponding to transfer impedance terms
are derived in the transformed diagonalized domain. The
transfer impedance terms in this diagonalized domain re-
lating the voltage on a given interface node at level & to
the current on another interface node at level m in the
same column j are found to be (Fig. 2(b)):

. 1 (ar),
ka= 1 . :
(at), +Ay

u

1 N 1 A
oy Ty AT
(au)j (al)J /

g=k—sgn(k—m)

(ef),
q=m+sgn(k —m)

- q
(“3)/ * }\jy
j=1.2,3,---,N,. (16)

The expression on the right side of (16) can be observed
to be the fraction of the current on the level m node which
reaches the level k£ node, multiplied by the impedance to
the upper ground at level %, including the admittance
A y*. Because the impedance matrix is symmetric for a

passive network, the transfer impedance element relating -

the voltage at a level m node to the current at a level &

node in the same column j is obtained directly as
ka = ka' (17)

The ‘ransfer impedance matrix in real space relating
voltages at level k and currents at level m is given by

V1e=1ANZ1in[ A1) 2 [Z]ind ] (18)

The total impedance matrix for the general case with
conducting strips at several levels can be constructed using
the self-impedance submatrices as given by [1] and the
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TABLEI
RESISTANCE AND CAPACITANCE PER UNIT LENGTH BETWEEN TWO
COPLANAR STRIPS ON SILICON {0 = 0.1 & /m)

COMPUTED EXACT

RO /m

W:S:W

R0 /m
N=20 N=40
5.0075 5.1282

C,pf/m
Extrap. N=20 N=40
5.2489 112.24 109.6

91.85

Copfim

Extrap.
106 96

2:1.2 5.2604 106 36

1:1: 6.1387 6.2678 6.3769 89.81 88.07 6.3938 87 9

5:1:.5 7.5757 7.6746 7773 74.16 73.23 723 7.8186 71.93

transfer impedance submatrices as presented above

Vh [Zln [Z]n (zl, | [,
| |2l (2] |
v1.| [1Zh 121, | 115]

(19)

Equation (19) can be used to extend Lennartson’s [1]
method for multiple strips (zero thickness) at the same
interface level to handle multiple zero thickness strips at
different levels and also multiple finite thickness strips at
different levels.

For a given set of potentials on different strips, the
solution of (19) for currents on the strips is found in the
same manner as for the single interface infinitesimally thin
strip case discussed earlier. These node currents are then
used to find all the line constants and quasi-TEM normal
mode parameters of ‘the structure.

V. RESULTS AND DISCUSSION

The propagation characteristics of several structures con-
sisting of single and coupled lines on lossy, anisotropic,
and layered structures have been computed by utilizing the
above techniques, and some typical results are presented
here. In order to check the accuracy of our calculations, we
have computed the propagation characteristics of some
uniaxial and lossy structures for which either exact or
reliable numerical results are available. In addition, propa-
gation characteristics of other layered, multilevel structures
are included to demonstrate the versatility of this tech-
nique.

Table I shows the capacitance and resistance per unit
length between two coplanar strips (width W separated by
a distance S) deposited on doped silicon with o = 0.1 /m,
€ =11.7 ¢,. The computed values for two sets of discretiza-
tions corresponding to 10 and 20 nodes on each strip are
given in the table together with the exactly calculated
values for this simple case obtained by conformal mapping
as given by

€t € K’(k)
2 K(k)

_ 2K(k)
h oK’(k)

(20)

where K(k) is the complete elliptic integral of the first
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Fig. 3. (a) Attenuation constant due to finite conductivity of the strip.
computed values, ---- from [11]. (b) Dielectric loss for micro-

strip on Silicon (¢ =1.0 £/m).

kind and
k=S/(S+2w)
K'(k)=K(k’")

k'=V1—-£k*.
It is seen that the error in the computed capacitance and
resistance values with N = 40 is around 2 percent and that
the accuracy can be further improved by using larger
number of nodes on the strips or by using a simple
extrapolation scheme such as
(21)

Cextrap = CZN + (C2N - CN)

The results obtained for the attenuation constant of a
microstrip due to conductor and dielectric losses are shown
in Fig. 3(a) and (b), respectively, together with the corre-
sponding results obtained by Pucel et al. [11] and Simpson
and Tseng [13]. Other results obtained for MIS lines are
also found to be in good agreement with those in [10] and
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Fig. 4. Propagation characteristics as a function of microstrip thickness.
Substrate silicon, 6 = 0.01 €/m, W= H.

TABLEII
NORMAL-MODE PHASE VELOCITIES OF COUPLED MICROSTRIPS ON
UNIAXIAL MEDIA

Calculated

Velocities From [17]

1080/ x10%0/5

W/H S/H 8/H Yoe Voo Yoe VYoo
Epsilam Shielded 0.700 0.250 2.55 1.187 1.193 1.207 1.2%0
Epsilam Unshielded 0.800 0.280 >s§ 1.107 1.1s2 1.138 1.204
Alumina Unshtelded 0.875 C.260 >6 1.1 1.273 1.15 1.286
Boron Nitride Shielded 1.60 0.095 2.80 1.875 1.862 1.876 1.87%
Saphire Shielded (90° offset) 0.590 0.225 2.20 1.265 1.255 1.256 1.257
Saphire Unshielded 0.730 0.260 >6 1.093 1.231 1.086 1.227

[15] for the range of conductivities in the lossy dielectric
propagation region. Fig. 4 shows the effect of the line
thickness on the propagation characteristics of microstrips
on lossy substrates. The even- and odd-mode velocities
calculated for some coupled microstrips on uniaxial sub-
strates are given in Table II, together with the same values
computed by Alexopoulos and Maas [17, table I]. Fig. 5
shows the microstrip parameters for an inverted microstrip
studied by Spielman [14], together with his results.

Fig. 6 shows the even- and odd-mode propagation char-
acteristics of a pair of coupled microstrips on a Si-Si0,
substrate as a function of the thickness of the two layers.
The propagation characteristics of a simple symmetrical
three-line—two-level structure chosen to demonstrate the
application of this method to multilevel problems are shown
in Fig. 7. Here the phase velocities of the three normal
modes A (odd), and B (even—even), and C (even—odd) [18]
are plotted as a function of the ratio of the thickness of the
two dielectric layers.

It should be mentioned that the computation time for
these calculations is dominated primarily by the CPU time
required in inverting the N X N matrix associated with the
nodes on the strips only and that the complexity of the
configuration, including the number of columns, is only
limited by the storage and the speed of the computer. Also,
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the method can be readily extended to three-dimensional
quasi-static problems as shown by Chao [5] for lossless
isotropic medium single-level structures.

V1. CoNcCLUSION

In summary, a simple versatile method to compute all
the parameters required for the computation of the quasi-
TEM propagation characteristics of lossy layered structure
with multilevel strips has been presented. The technique
and results should be useful in the analysis of many
structures where other more sophisticated techniques are
either not available or become too cumbersome.
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